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Abstract

Over the past three decades, a wide variety of active control methods have been proposed for controlling problematic
vibration. The vast majority of approaches make the implicit assumption that sensors can be located in the region where
vibration attenuation is required. For many large scale structures or where the system environment is harsh, this is either
not feasible or it is prohibitively expensive. As a result, the optimal control of local vibration may lead to enhancement at
remote locations. Motivated by such problems in marine system environments, this paper describes a simple geometric
methodology that provides an approach for defining the design freedom available for reducing vibration both at local and
remote locations. The results can be used to develop design procedures for both discrete frequency and broad-band
control. Robustness to modelling error can also be treated in the same geometric framework. Validation of the approach is
carried out using an experimental facility that has been developed to replicate the problems associated with rotor blade
vibration.
© 2008 Published by Elsevier Ltd.

1. Introduction

Vibration problems generally occur either at specific discrete frequencies, caused by periodic disturbances
such as out of balance forces in rotating machines, or in a narrow band, often associated with lightly damped
structural modes. For both discrete frequency (or harmonic) and narrow-band control, the design aim is to
minimize the vibration at specific measured points on a structure and a number of well established design
methods are available (for example Refs. [1-5]). The optimum solution is often based solely on information
local to the actuators and implementation can, in practice, result in increased levels of vibration at remote
locations. Such problems are particularly evident in large scale interconnected structures where it is neither
feasible nor cost effective to provide a wide distribution of sensors and actuators. Attainment of a globally
optimal solution may therefore necessitate the implementation of a locally sub-optimal one.

The work presented here was motivated by the first author’s previous research in the area of vibration
control for marine systems [6] and where, specifically, it is not practically viable to permanently locate sensors
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at all points where vibration attenuation is ultimately required. This is particularly true in ship propulsion
transmission systems where propeller blade excitation at specific blade passing frequencies can lead to
significant large area hull excitation causing passenger and crew discomfort, self-noise sonar interference and,
in extreme cases, catastrophic fatigue failure [7,8]. Similar problems occur in helicopter rotor systems where
blade-induced vibration transmits through the fuselage which, not only compromises the reliability of on-
board electronic equipment, but also leads to reduced flight envelopes [9]. Also in aerospace applications, the
increasing use of lightweight and flexible structures often results in wide area flow-induced vibration that can
lead to dynamic aero-elastic instabilities such as wing flutter, with the potential to cause structural failures in
flight [10].

Although the issue addressed here is relevant to a wide variety of systems, it is particularly apposite for
bladed power transmission systems. The active approach to vibration control of a practical rotor blade system
is made particularly difficult by the harsh environment in the proximity of the blades. There are also
difficulties relating to the practical implementation of actuators and sensors in rotating frames [11].
Nevertheless, a number of active and semi-active solutions have been proposed to tackle the vibration problem
at source by, for example, the integration of smart materials into the blades [12—14]. However, such solutions
are costly, difficult to maintain and are unproven in real operational environments. An alternative approach is
to attenuate the resultant vibration by actuating within the shafting system [6,15], but this can lead to
increased excitation of the blades or elsewhere in the power train. This is tackled here by considering the
generic problem of determining strategies for the attenuation of both the local and the remote vibration using
only local sensing and control actions.

In the paper a number of new results are presented that define the freedom available to the designer for
providing both local and remote vibration reduction and a simple, yet powerful, geometric design
methodology is introduced. The efficacy of the new design methodology is illustrated using a laboratory
scale test rig that has been developed to replicate the generic problems associated with the propagation of
rotor blade vibration through the power train.

2. Geometric controller design
2.1. Preliminaries

It is assumed that the vibrating system can be described by the following frequency response function

(FRF):

y(jo) _ 911(0)  g12(jo) | | u(jw) 0
z(o) | | 9uGo)  gn(o) || dio) |’

where y(jw), z(jo), u(jo) and d(jw) represent the locally measured vibration, the remote vibration, the control

force and the disturbance force respectively. The control aim is to achieve reductions in both y(jw) and z(jw)
(where possible) through the application of the feedback control law:

u(jo) = —k(o)yGm). )

Although a measurement of z(jw) is not available during implementation, it is assumed that the transfer
function matrix:

G= 3)

gn(o) gp(w)
921(w)  gpn(w)

can be obtained during a commissioning phase (robustness to modelling error is considered later in Section 2.4
of the paper). It will be noted that the system model, Eq. (1), together with controller, Eq. (2), can be
represented by the linear fractional transformation description (Fig. 1) that is commonly used in modern H
and H, design procedures [16]. Although such procedures can be useful for discrete frequency and narrow-
band control (through a suitable definition of weighting filters), the ““handle-turning’ nature of the solution
means that valuable physical insight into the existence of suitable solutions is often lost.
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Fig. 1. Linear Fractional Transformation Representation.

By combining Egs. (1) and (2) to obtain the closed loop transfer functions, y(jw)/d(jw) and z(jw)/d(jw),
respectively, the problem can be stated as finding the compensator k(jw) that simultaneously satisfies:

(14 g Godk(e)) ' <1 @
and

1 — g5, (j0) g i)k )1 + g, (k) ' g15w)| <1, (5)

either for a discrete frequency w = w, or in the case of broad-band control Yw €[w;,w»]. Satisfying inequality
(4) will reduce vibration levels at the locally measured point with respect to the uncontrolled case, whereas
satisfying inequality (5) will ensure a relative improvement for the remote location.

The discrete frequency and broad-band cases are treated separately in Sections 2.2 and 2.3, and the
robustness to modelling error is considered in Section 2.4.

2.2. Harmonic control

For ease of exposition, the notation does not include an explicit dependency on frequency so within this
section the use of g1 etc. should be interpreted as g;1(jw,). Defining the sensitivity at this discrete frequency by
the complex number o, then the closed loop response for y can be expressed as

Yy =ogd, (6)
where for attenuation at this point, |o| <1 (a restatement of condition 4). It follows that
1 —
=12 (7
%g11
Condition (5) can therefore be restated as
(o — 1912921 4 4l <y ®)
911922
or with the definition:
9129
p=(—1)==2 )
911922
simply,
B+ 1]|<1. (10)

Condition (4) can also be expressed as a function of f by rearranging (9) and substituting in || <1 resulting
in

’ﬁ911922+1’<1 (11)
912921
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or
y+1|<1 (12)
with the definition
9119 o
y = BHEE = B (13)
912921

Conditions (10) and (12) are entirely equivalent to (5) and (4) respectively and it will be noted that both
describe the equation of a unit circle (and its interior) on the complex plane with centre located at (—1,0). It is
possible, therefore, to achieve simultaneous reduction in both y(jw) and z(jw) for a discrete frequency w = w,
provided that for a f§ located within the unit circle with centre (—1,0), there exists a y satisfying Eq. (12) that is
also located within the same circle.

This can be developed further by noting that if the interior of the unit circle with centre (—1,0) on the
complex f-plane is mapped onto the complex y-plane then the result is also a circle (and its interior) with
centre at —g and radius | g}| It follows therefore that where this circle intersects with the unit circle with centre
(—1,0) simultaneous reduction of y(jw) and z(jw) for a discrete frequency w = w, is achievable.

This is illustrated in Fig. 2 from which a number of important results follow directly.

Proposition 1. Provided that |§(jw0)| #0 and Re(§(jw,)) >0 if Im(§(jw,)) = 0 then a controller k(jw,) can always
be found to achieve simultaneous reduction in both y(jw,) and z(jo,).

Proposition 2. The optimal controller kop(jo,) results from yop, a point taken from the line on the complex y-
plane that joins the point (—1,0) with the point —g.

The exact location of y,; depends upon the control objective. If for example this is to produce maximum
attenuation of z without increasing y then, assuming that the point —§ is located outside of the unit circle with
centre (—1,0), the optimal point is at the intersection of this circle with the line that joins the two centres. If,
however, the optimum simultaneous attenuation of both z and y is required, yop Will be located at the mid-
point of the line that joins the two centres. It will also be noted that either end of the optimal line corresponds
either to a situation where the controller will provide perfect control of local vibration (i.e. y = 0), at point
(—1,0) or perfect control of the remote vibration (z = 0), at point —g. This observation leads to the following
results.

¥ -Plane

_ 811 (]'(1)0) 822 Gw()) N
212 (i0,) &1 (0,)  /

T 'yapt

Fig. 2. Mapping of [f+ 1| = 1 on the complex y-plane.
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Proposition 3. A controller exists that can reduce z(jw,) to zero without leading to an increase in y(jw,) if and
only if g(Gw,) is positive real and is located on or inside the unit circle having centre at (1,0) on the complex plane.

Proposition 4. A controller exists that can reduce y(jo,) to zero without leading to an increase in z(jw,) if and
only if Re(§(jw,))=0.5.

It is clear that for the case that §(jw,) is located inside the unit circle having centre at (1,0) and
Re(§(jw,)) = 0.5 the designer will have the choice to reduce either z(jw,) or y(jw,) to zero; further for the special
case j(jw,) = 1 the same controller will annihilate both. It should be noted, however that since

N
A +agn’

perfect control of y(jw,) via feedback is impractical in this simple form due to the requirement for infinite gain,
although an instantaneous harmonic controller structure [17] can be used.

The results presented here can also be extended to include the case where a specific level of closed-loop
attenuation is required by scaling the respective circles accordingly. The case where the requirement is to
reduce the vibration levels simultaneously across a range of frequencies is considered in the following section.

k= (14)

2.3. Broad-band control and stability considerations

The case where it is required to reduce y(jow) and z(jw) Yw € [w;,w»] can be approached by noting that for
every frequency in the range, from Proposition 1, y(jw) can be selected to satisfy conditions (10) and (12).
However, the distinction from the single discrete frequency case is that for every w € [w;,m,] the mapping of
Eq. (10) onto the complex y-plane results in a separate circle. As a result the optimal solution, y,p¢(jw), can be
represented as a contour on the complex y-plane, this is illustrated in Fig. 3. Note that for ease of exposition
the explicit dependency of the variables on frequency is not included in the notation for the remainder of the
section.

Depending on the control objective it then becomes possible to express o as a function of the elements of
the transfer function matrix (3). For example, the contour that provides the optimum reduction in z without

increasing y can be expressed as
Yopt = (15)

v+ive |1—=4d]>1,

Im

¥ -Plane

Re

Fig. 3. Mapping of y,,(jo) on the complex y-plane.
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where
- (I —Re(9))
L =
V(1 = Re(@))” + Im(3)
) = —Im(g)
;= .
/(1 = Re(@)” + Im(3)?
Such a result would appear to imply that a compensator exists that would provide simultaneous reduction
(or at least not enhancement) across an arbitrarily wide range of frequencies. Of course this is not necessarily
true as there has been no consideration of closed loop stability. The question that needs to be asked therefore

is whether it is possible to select y,p such that the resulting compensator ensures closed loop stability. The
answer to this is provided in the following main result:

-1,

(16)

Proposition 5. If g,,(jw) is both stable and minimum phase and . (jo) is a mapping of a stable function and, in
addition, Re(yopt)>—1 when Im(yop) =0, then the resulting compensator will provide internal closed loop
stability.

The proof follows from noting that the loop gain can be described by

-7

L =kgy, =Tty

(17)

On inspection of the form of Eq. (17) (i.e. equivalent to a closed loop system with loop gain y), it is apparent
that L will be stable if y is also stable and its mapping of the Nyquist D-contour does not enclose the (—1,0)
point. If L is stable then the closed loop system will also be stable if in addition the mapping of the Nyquist
D-contour of L does not enclose the (—1,0) point on the complex plane. It is straightforward to show that both
of these stability conditions can simultaneously be met by ensuring that the y contour always crosses the real
axis in the complex y-plane to the right of the (—1,0) point. If gy; is stable and minimum phase, then, for a
stable L, k will be stable and there will be no unstable pole-zero cancellations between g;; and k. This
completes the proof.

The assumption that g;; is both stable and minimum phase is not unduly restrictive since given the problem
outlined in the introduction, it is very likely that the sensor and actuator can be arranged to be collocated. The
requirement for y to be stable is not as straight forward but could be approached, for example, by fitting an
FIR filter (stable by definition) to the y,pc contour. Note that the design can still proceed by using optimum
conditions such as given in Eq. (15), but in the region of cross-over the contour must be modified to satisfy
Re(Vopt) >—1

2.4. Robustness to modelling error

Since the above design procedures start from the premise that the frequency response functions are obtained
during a calibration process, it is important to consider the effects of model uncertainty on performance.
Because of the nature of the implementation, with sensors monitoring only the local vibration, it is logical to
consider uncertainty associated with g, separately to that of g;», g»; and g»,. As a result two multiplicative
uncertainty terms are considered as follows:

91171 =g, (1 + 411) (18)
and
gglg]lyz — g210ng (1 4 A), (19)
I 922

[T3RL)

where the superscripts “p”” and “0”” denote the true plant and the nominal design models respectively. With
these definitions it can be shown that the reduction of the local vibration in the presence of uncertainty
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requires that y°, selected on the basis of the nominal model, also satisfies

1+9°
LA (20)
|1 —yodn|

The equivalent condition for the reduction of the remote vibration in the presence of the uncertainty is

7+ 4)

1+ —T|<1 21
(I —y°411)g @
which follows from the definition of
91195
7= iy 22

and the combination of the true plant with Egs. (13) and (10).
Since by definition |1+ y°| <1, a sufficient condition for (20) to be satisfied is

|1—“/0A11|>1. (23)

This can also be interpreted geometrically as an increase in the radius of the circle from which y° can be
selected to still produce a reduction in the local vibration. As a result, if condition (23) is satisfied,
the attenuation of local vibration in the face of control path uncertainty will be greater than predicted for the
nominal design.

As the sensors and actuators are available at the local position to periodically re-calibrate the system, it is
reasonable to assume that 4;; = 0 whereupon condition (20) is satisfied by definition and condition (21)
reduces to

°(1+ 4

g

‘1 + (24)

This thereby defines the maximum uncertainty that can be tolerated without increasing the remote vibration
with the nominal design. For the case that the intention had been to annihilate the remote vibration then
1 = —g? and condition (24) further simplifies to

4] <1. 25)

As a result up to 100% multiplicative uncertainty can be tolerated whilst maintaining simultaneous
vibration attenuation and the direct correspondence between uncertainty magnitude and performance loss is
clear. It will be noted that condition (24) also has a geometric interpretation and can be considered to be a
perturbation of the centre and radius of the nominal mapping of the unit S-circle on the complex y-plane as
illustrated in Fig. 4 (where § = §°/(1 + 4)). Since by definition the perturbation is unknown, then the most
robust selection from the nominal optimal line (Fig. 2), is for y° = 79 4 jy¢ to be selected as the mid-point of its
intersection with the unit y-circle and the mapping of the unit S-circle on the complex y-plane (denoted by the
triangular symbol in Fig. 4). The coordinates of this point are given by

(1—Re(@) |1+ -9
V(1 = Re(@))” + Im(g)
Y, = = > = —1, (26)
—Im@) |1+ =t
V(= Re(@))” + Im(3)
_ iy 27)

Vi - 2
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Y-Plane A |
m

Fig. 4. Mapping of |f+ 1| = 1 on the complex y-plane under uncertainty.

Fig. 5. Blade vibration experimental rig: (a) main view showing beam and hollow shaft, (b) steel block with control shaker and control
loop accelerometer and (c) beam with disturbance shaker and monitoring accelerometer.

3. Experimental validation
3.1. Blade vibration facility

The main results of the paper are demonstrated by using them to design a discrete frequency controller for
the experimental facility shown in Fig. 5. The facility has been constructed to replicate the key problems
associated with the transmission of rotor blade vibration that were discussed in the introduction. The remote
control problem arises from the fact that it is desired to control both blade vibration and onward transmission
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Fig. 6. Remote control of rotor blade vibration.
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Fig. 7. Magnitude of frequency response function relating the beam acceleration to the beam excitation shakers command signal.

through the power train using only sensors and actuators located at the thrust bearing end of the shaft!. This
concept is illustrated in Fig. 6 where, in the context of Eq. (1), y(jw) represents the axial vibration of the thrust
bearing, z(jw) the axial vibration of the blades, u(jw) the control force applied at the thrust bearing and d(jw)
the disturbance forces that excite the blades. This does represent a case where during a commissioning phase
all the necessary transfer functions can be measured but where it is not currently practically viable to provide
in-service sensing and actuation of the blade.

To represent the rotor blade, the test rig has a flexible beam; this is pinned in the centre to one end of a
hollow shaft that represents the rotor. The other end of the shaft is fixed to a steel block, representing the
thrust bearing, which is rigidly connected to the supporting foundation. The beam can be excited by two small
30N Gearing and Watson 1V40 inertial shakers, to simulate the effect of hydrodynamic or aerodynamic
loading on the blades; and at the fixed end of the shaft, a S0 N Gearing and Watson 1V45 shaker implements
the control force. For monitoring and calibration purposes only, the vibration in the beam is measured by two
accelerometers located close to the shakers and another accelerometer used in the control loop measures the
acceleration of the block. The controller software is developed in the Matlab/Simulink environment and
implemented digitally at a sample rate of 5kHz using a dSPACE system based upon the Power PC 604e

"Note this general concept is the subject of several BAE Systems patents.
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processor and Texas Instruments TMS320 DSP. All measurements are conditioned with Sth-order
Butterworth anti-aliasing filters with a 700 Hz break frequency.

3.2. Analysis and experimental results

Fig. 7 shows the frequency response of the sum beam acceleration to excitation of the beam using a common
force for both shakers (the plot is therefore of |g.»(jw)|). It can be seen that the first bending mode resonance
occurs in the region of 244 Hz and that this leads to a peak in the transmission along the shaft, as can be seen
in the block response to the same forcing (]g,(jw)|), Fig. 8.

The problem therefore considered is the extent to which simultaneous reduction in both y(jo,) and z(jw,)
can be achieved for w, = 244 Hz.

10

5 L i
0
-5

Magnitude dB
o

_40 L L L L L L L
0 100 200 300 400 500 600 700 800
Frequency Hz

Fig. 8. Magnitude of frequency response function relating the steel block acceleration to the beam excitation shakers command signal.
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Fig. 9. Mapping of [+ 1| = 1 on the complex y-plane for 244 Hz.
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The mapping of conditions (10) and (12) onto the complex y plane for the blade vibration rig measured
responses at 244 Hz is shown in Fig. 9. Also shown (dotted circles) are the mappings that represent a 6 dB
attenuation boundary for y(jw,) and z(jw,), respectively. It is clear that there is a significant area of
intersection where simultaneous reduction of both y(jw,) and z(jw,) is theoretically possible.

Beam: ¥at Point A Block: 7at Point A

Acceleration V
o

Acceleration V
o

0 0.5 1 0 0.5 1
Time [s] Time [s]

Beam: 7at Point B Block: 7at Point B

Acceleration V
o

Acceleration V
o

0 0.5 1 0 0.5 1
Time [s] Time [s]

Beam: ¥at Point C Block: 7at Point C

Acceleration V
o
Acceleration V
o

5 1

0 0.5 1 0 0.5 1
Time [s] Time [s]

Beam: ¥at Point D Block: 7at Point D

Acceleration V
o

Acceleration V
o

5 A

0 0.5 1 0 0.5 1
Time [s] Time [s]

Fig. 10. Acceleration time histories for each of the 244 Hz controllers. The left column displays the sum blade acceleration for each of the
controller design points 4— D marked in Fig. 9 and the right column displays the corresponding block acceleration.
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To illustrate the performance and validate the theory outlined above, four points, labelled A— D in Fig. 9 are
selected to construct discrete frequencies controllers (via Eq. (14)). Based on their location on the complex y
plane it is anticipated that the points A— D will respectively, annihilate z(jw,) whilst marginally increasing
y(jw,), leave z(jw,) unchanged whilst reducing y(jw,) by a little over 6 dB, reduce z(jw,) by a little under 6 dB
whilst reducing y(jw,) by around 3 dB (the mid-point of the region of intersection and most robust selection as
defined by Eqgs. (26) and (27)) and reduce z(jw,) by around 12dB without increasing y(jo,). Each of these
controllers was applied to the test rig for the condition of fixed amplitude 244 Hz sinusoidal disturbance
forces. The results are shown as acceleration time-histories” in Fig. 10, where the left column displays the beam
sum acceleration and the right, the corresponding block acceleration, for each controller design. The top row
of plots corresponds to a controller designed from a value of y at point 4 in Fig. 9, the second row is for a
controller from 7y at point B, the third row is for a controller from 7y at point C and the bottom row is for a
controller from 7y at point D. The instant at which the controller was turned on in each case will be noted by
the first disturbance to the signal amplitude. For all cases it is clear that following convergence to the steady
state, the performance predictions obtained from the complex y plane are correct, thereby validating the
theoretical results presented in Section 2 above.

4. Conclusions

A novel geometric vibration controller design approach has been presented in this paper. The method is
particularly targeted at situations where it is required to apply control at a particular point on a structure but
sensors and actuators can only be located at some remote location. The approach results in a straightforward
design strategy where the design freedom available for both remote and local vibration is explicitly
parameterized. A number of fundamental results have been developed for discrete frequency control and then
extended to cover the broad-band case, where an additional design constraint has been defined to ensure
closed-loop stability. Robustness to modelling error has been treated in the same geometric framework. The
main theoretical results have been validated through their application to the control of vibration in a test rig
that has been constructed to replicate the problems associated with rotor blade vibration propagation.
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